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Abstract

A penalty finite element analysis with bi-quadratic elements is carried out to investigate the effects of uniform and non-uniform heat-
ing of inclined walls on natural convection flows within a isosceles triangular enclosure. Two cases of thermal boundary conditions are
considered; case I: two inclined walls are uniformly heated while the bottom wall is cold isothermal and case II: two inclined walls are
non-uniformly heated while the bottom wall is cold isothermal. The numerical solution of the problem is presented for various Rayleigh
numbers (Ra), (103

6 Ra 6 106) and Prandtl numbers (Pr), (0:026 6 Pr 6 1000). It has been found that at small Prandtl numbers, geom-
etry does not have much influence on flow structure while at Pr ¼ 1000, the stream function contours are nearly triangular showing that
geometry has considerable effect on the flow pattern. In addition, the presence of multiple circulations are observed for small
Pr ðPr ¼ 0:026Þ which causes wavy distribution of local Nusselt number. It is observed that non-uniform heating produces greater heat
transfer rates at the center of the walls than the uniform heating; however, average Nusselt numbers show overall lower heat transfer
rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained
and for convection dominant regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented
for specific Prandtl numbers.
� 2008 Published by Elsevier Ltd.

Keywords: Penalty finite element method; Natural convection; Triangular enclosure; Non-uniform heating
1. Introduction

Natural convection in a enclosed cavity is important in
many engineering applications and in particular, triangular
enclosure has received a considerable attention because of
its applicability in various fields such as

� Energy related applications, for example: thermal insu-
lation of buildings using air gaps, solar energy collec-
tors, furnaces and fire control in building etc. [1].
0017-9310/$ - see front matter � 2008 Published by Elsevier Ltd.

doi:10.1016/j.ijheatmasstransfer.2007.12.018

* Corresponding author. Tel.: +91 44 2257 4154; fax: +91 44 2257 0509.
E-mail addresses: tanmay@iitm.ac.in (T. Basak), sjroy@iitm.ac.in

(S. Roy), arbala@iitm.ac.in (A.R. Balakrishnan).
� Geophysical applications, for example: differential heat-
ing and cooling in lakes, pollutants diffusion in sea and
natural convection in reservoir sidearms etc. [2].

Among the earlier reported studies for triangular enclo-
sures, Karyakin et al. [3] and Holtzman et al. [4] described
laminar natural convection in isosceles triangular enclo-
sures heated from below and symmetrically cooled from
above. Buoyancy driven flows are complex because of
essential coupling between the transport properties of the
flow and thermal fields. A literature survey shows that a
comprehensive review of these problems is well docu-
mented in a recent book by Bejan [5]. Further, Del Campo
et al. [6] modeled natural convection in triangular
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Fig. 1. Schematic diagram of the physical system.

Nomenclature

g acceleration due to gravity, m s�2

J Jacobian of residual equations
k thermal conductivity, W m�1 K�1

L height of the triangular cavity, m
N total number of nodes
Nu local Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
R residual of weak form
Ra Rayleigh number
T temperature, K
T h temperature of hot bottom wall, K
T c temperature of cold vertical wall, K
u; v x and y components of dimensional velocities,

respectively
U ; V x and y components of dimensionless velocities,

respectively
X ; Y dimensionless distances along x and y coordi-

nates, respectively

Greek symbols

a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
n; g horizontal and vertical coordinates in a unit

square, respectively
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

U basis functions
w stream function

Subscripts
b bottom wall
i residual number
k node number
l left wall
r right wall

Superscript

n Newton iterative index
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enclosures using Galerkin finite element method with a
stream function – vorticity formulation of steady state
equations of motion for A = 0.2–20 (where A is the aspect
ratio) and Gr = 103–106. Their investigation is based on a
symmetric boundary condition for a system with heating
from below. The solutions obtained were symmetric about
midplane. Poulikakos and Bejan [7] investigated the fluid
dynamics inside a triangular enclosure with cold upper wall
and horizontal bottom wall. They applied the asymptotic
methods of Cormack et al. [8] to find approximate steady
state regime and temperature distributions inside a triangle
when aspect ratio of the enclosure is vanishingly small.
This led to the criteria for the existence of distinct thermal
and viscous layers along both the walls in steady state. This
physical complexity in confined convection is not only a
topic for analysis but has equal significance for numerical
and experimental investigations. The extensive research
based on various numerical simulations reported by Patter-
son and Imberger [9], Nicolette et al. [10], Hyun and Lee
[11], Fusegi et al. [12] establish that several attempts have
been made to acquire a basic understanding of natural con-
vection flows and heat transfer characteristics in an
enclosure.

The aim of the present paper is to study the circulations
and temperature distributions within the triangular enclo-
sure and heat transfer rate at the walls in terms of local
and average Nusselt numbers for uniform and non-uni-
form heating cases. The geometry of the triangular enclo-
sure with boundary conditions is shown in Fig. 1. These
boundary conditions resemble summer day boundary con-
ditions where the outside temperature is hot and inside
temperature is cold. The jump discontinuities in Dirichlet
type of wall boundary conditions at the corner points
(see Fig. 1) correspond to computational singularities. In
particular, the singularity at the bottom corner nodes needs
special attention. One of the ways for handling the problem
is assuming the average temperature of the two walls at the
corner and keeping the adjacent grid-nodes at the respec-
tive wall temperatures similar to the earlier works of square
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cavity [13,14]. This approach provides the satisfactory
results, and the thermal equilibrium of the system is
explained in terms of heat transfer rates along the left
and right walls. Singularity does not appear in case of sinu-
soidally heated wall.

In the current study, we have used Galerkin finite ele-
ment method with penalty parameter to solve the non-lin-
ear coupled partial differential equations governing flow
and temperature fields for both uniform and sinusoidally
varying temperature distribution prescribed at side walls.
Non-orthogonal grid generation has been done with iso-
parametric mapping [15,16]. The complete explanation
about grid generation using iso-parametric mapping is
given in Appendix A. Numerical results are obtained to
display the circulations and temperature distributions
within the triangle and the heat transfer rate for both the
walls in terms of local and average Nusselt numbers.

2. Governing equations

The fluid properties are assumed to be constant except
the density variation which was determined according to
the Boussinesq approximation which is commonly used
in buoyancy driven flow. The essence of Boussinesq
approximation is that the difference in inertia is neglected
but gravity is sufficiently strong to make the specific weight
appreciably different between the two liquids of different
temperatures. The dimensionless form of the governing
equations for steady natural convection flow using conser-
vation of mass, momentum and energy can be obtained
with the following variables:

X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
; h ¼ T � T c

T h � T c

;

P ¼ pL2

qa2
; Pr ¼ m

a
; Ra ¼ gbðT h � T cÞL3Pr

m2
;

ð1Þ
and the governing equations are:

oU
oX
þ oV

oY
¼ 0; ð2Þ

U
oU
oX
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oU
oY
¼ � oP

oX
þ Pr

o
2U

oX 2
þ o

2U

oY 2

� �
; ð3Þ

U
oV
oX
þ V

oV
oY
¼ � oP

oY
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o2V

oX 2
þ o2V

oY 2

� �
þ RaPrh; ð4Þ

U
oh
oX
þ V

oh
oY
¼ o

2h

oX 2
þ o

2h

oY 2
; ð5Þ

with the boundary conditions (see Fig. 1)

UðX ; 0Þ ¼ 0 ¼ V ðX ; 0Þ; hðX ; 0Þ ¼ 0 on AB; 80 6 X 6 2;

UðX ; Y Þ ¼ 0 ¼ V ðX ;Y Þ; hðX ; Y Þ ¼ 1 or

sinðpY Þ on AC; Y ¼ X ;80 6 X 6 1;

UðX ; Y Þ ¼ 0 ¼ V ðX ;Y Þ; hðX ; Y Þ ¼ 1 or

sinðpY Þ on BC; Y ¼ 2� X ;81 6 X 6 2:

ð6Þ
3. Solution procedure and post-processing

The momentum and energy balance equations (Eqs. (3)–
(5)) are solved using the Galerkin finite element method.
The continuity equation (2) is used as a constraint due to
mass conservation and this constraint may be used to
obtain the pressure distribution. In order to solve Eqs.
(3)–(5), the penalty finite element method is used where
the pressure P is eliminated by a penalty parameter c and
the incompressibility criteria given by Eq. (2) results in

P ¼ �c
oU
oX
þ oV

oY

� �
: ð7Þ

The continuity equation (2) is automatically satisfied for
large values of c. Typical value of c that yields consistent
solutions is 107. Using Eq. (7), the momentum balance
Eqs. (3) and (4) reduce to

U
oU
oX
þ V

oU
oY
¼ c
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ð9Þ

The system of equations (5), (8) and (9) with boundary
conditions is solved by using Galerkin finite element
method [15]. Since the solution procedure is explained in
an earlier work [14], the detailed description is not included
in this paper. The numerical solutions are obtained in
terms of the velocity components ðU ; V Þ and stream func-
tion (w) is evaluated using the relationship between the
stream function (w) and the velocity components [17],
where the stream function (w) is defined in the usual way
as U ¼ ow

oY and V ¼ � ow
oX . It may be noted that, the positive

sign of w denotes anti-clockwise circulation and the clock-
wise circulation is represented by the negative sign of w.
The no-slip condition is valid at all boundaries as there is
no cross flow, hence w ¼ 0 is used for the boundaries.

The heat transfer coefficient in terms of the local Nusselt
number (Nu) is defined by

Nu ¼ � oh
on
; ð10Þ

where n denotes the normal direction on a plane. The local
Nusselt numbers at bottom wall ðNubÞ, left wall ðNulÞ and
right wall ðNurÞ are defined as

Nub ¼ �
X9

i¼1

hi
oUi

oY
; ð11Þ
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X9

i¼1
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1ffiffiffi
2
p oUi
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2
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and
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� �
: ð13Þ
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The average Nusselt numbers at the bottom and side
walls are

Nub ¼
R 2

0
NubdX

X j20
¼ 1

2

Z 2

0

NubdX ð14Þ

and

Nul ¼ Nur ¼
1ffiffiffi
2
p

Z ffiffi
2
p

0

NuldS: ð15Þ

Here dS denotes the elemental length along the side walls
of the triangle as seen in Fig. 1.

4. Results and discussion

4.1. Numerical tests

The computational domain in n� g coordinates (see
Appendix A) consists of 20 � 20 bi-quadratic elements
which correspond to 41 � 41 grid points. It may be noted
that the computational grid in the triangular domain is
generated via mapping the triangular domain into a square
domain in n� g coordinate system as shown in Fig. 2 and
the procedure is outlined in Appendix A. The bi-quadratic
elements with lesser number of nodes smoothly capture the
non-linear variations of the field variables which are in con-
trast with finite difference/finite volume solutions available
in the literature [18,19].
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Fig. 2. (a) The mapping of triangular domain to a square domain in n� g co
element in n� g coordinate system.
In the current investigation, Gaussian quadrature based
finite element method provides the smooth solutions at the
interior domain including the corner regions as evaluation
of residuals depends on interior Gauss points and thus the
effect of corner nodes are less pronounced in the final solu-
tion. In general, the Nusselt numbers for finite difference/
finite volume based methods are calculated at any surface
using some interpolation functions which are now avoided
in the current work. The present finite element approach
offers special advantage on evaluation of local Nusselt
number at the left, right and bottom walls as the element
basis functions are used to evaluate the heat flux [13].
For the two cases (Cases I and II) considered here, the
Rayleigh number is varied from 103 to 106 for a fixed Pra-
ndtl number, while the plots are obtained for Pr = 0.026–
1000. Local and average Nusselt numbers are evaluated
for all the cases. The comparative study was made for uni-
form and non-uniform heating of the side walls. The
detailed analysis has been shown in various sections as fol-
lows. For brevity, only the most important results are pre-
sented in the following sections.
4.2. Uniform heating of side walls (case I)

Figs. 3–8 illustrate the stream function and isotherm
contours when the side walls are uniformly heated while
the bottom wall is maintained at constant cold tempera-
ing
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ordinate system and (b) the mapping of an individual element to a single
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Fig. 3. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Ra ¼ 2� 104

and Pr ¼ 0:026 (Case I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.
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Fig. 4. Temperature and stream function contours for cold bottom wall, hðX ; 0Þ ¼ 0 and uniformly heated inclined walls, hðX ; Y Þ ¼ 1, with Ra ¼ 105 and
Pr ¼ 0:026 (Case I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.
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and Pr ¼ 0:026 (Case I). Clockwise and anti-clockwise flows are shown with negative and positive signs of stream function, respectively.
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ture. The fluid near the inclined portion of the enclosures is
hotter than the fluid near the cold bottom wall and hence
the fluid near the inclined walls have lower density than
those near the cold bottom wall. Consequently, the fluid
near the hot inclined walls move upward resulting in two
oppositely rotating circulations in the enclosure with eye
of vortices located at the center of each half of the cross-
section. It is observed that, the left half of axis of symmetry
gives clock wise circulations whereas right half of axis of
symmetry gives anti-clockwise circulation pattern. At low
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Rayleigh number, the isotherm lines are smooth and
monotonic and the magnitudes of the stream function con-
tours are quite small. This illustrates that at small Ra, the
heat transfer is mostly due to conduction. The temperature
contours are smooth curves which span the entire enclosure
and they are generally symmetric with respect to vertical
center line. At Ra ¼ 2� 104 and Pr ¼ 0:026, the tempera-
ture contours for h P 0:2 start getting deformed towards
the bottom wall (Fig. 3). The presence of significant con-
vection is also exhibited in the temperature contours which
get pushed towards the central portion of the bottom wall.
The critical Rayleigh number (for this case: Ra ¼ 2� 104)
may be obtained from asymptotes of average Nusselt num-
ber vs Rayleigh number plot as discussed later. It may be
noted that conduction is dominant below the critical Ra.
At Ra ¼ 105 and Pr ¼ 0:026, the buoyancy driven circula-
tion inside the cavity also increases as seen from the greater
magnitudes of the stream function (see Fig. 4). The circula-
tions are greater near the center and least at the wall due to
no-slip boundary conditions. It is observed that the iso-
therms are compressed towards the bottom wall as seen
in Fig. 4. It may also be noted that the regime near the
top corner has no significant thermal gradient resulting in
no circulations. As Rayleigh number increases to 7� 105

for Pr ¼ 0:026, isotherms are further compressed towards
the bottom wall and therefore the deformation occurs in
the stream function near the central symmetric line (see
Fig. 5). It is also seen that secondary circulations are devel-
oped near to the intersection of the inclined walls. In addi-
tion, the temperature contours with h P 0:7 start getting
deformed near the central regime due to secondary circula-
tions. As Ra further increases to Ra ¼ 106 for Pr ¼ 0:026
(see Fig. 6) the temperature contours with 0:9 6 h 6 0:7
within the domain further condense near the central regime
due to stronger secondary circulations.

As Pr increases from 0.026 to 0.7, the secondary circula-
tions are suppressed and due to increase of Pr, the strength
of primary circulations is increased as seen in Fig. 7. At
Ra ¼ 106 and Pr ¼ 0:7, the circulations near the central
regime are stronger and consequently the temperature con-
tours with h P 0:2 are found to be compressed towards the
bottom wall. Similar situation is also observed for
Pr ¼ 1000 as seen in Fig. 8. Comparative studies on Figs.
7 and 8 show that, as Pr increases from 0.7 to 1000, the val-
ues of stream function and isotherms in the core cavity
increase. It may be seen that the greater circulations due
to higher Pr lead to elliptical stream function deformed
towards the corner portions of bottom wall. At high Pr,
the stream functions, except at the central regime are
almost triangular indicating higher intensity of flows.
Effects of Prandtl number for various Rayleigh numbers
on local and average Nusselt number are discussed later
in detail.

4.3. Non-uniform heating of side walls (case II)

Figs. 9–11 illustrate the stream function and isotherm
contours when the inclined walls are non-uniformly heated
via sinusoidal functions. As seen in Figs. 3–8, uniform
heating of inclined walls causes a finite discontinuity in
Dirichlet type of boundary conditions for the temperature
distribution at both edges of the bottom wall. In contrast,
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the non-uniform heating removes the singularity at the
edges of bottom wall and provides a smooth temperature
distribution in the entire enclosure. Simulations indicate
that the isotherms are almost smooth and parallel and
magnitude of stream function is very low at smaller Ra (fig-
ure not shown). Similar situations are also observed for
uniform heating case. It may be noted that the conduction
dominant heat transfer is observed upto Ra ¼ 2� 104. At
Ra ¼ 2� 104, the isotherms with h 6 0:5 start getting
pushed towards the bottom wall (see Fig. 9). It is interest-
ing to observe that the top portion of the side wall within
the cavity have significant thermal gradient and that results
in stronger circulations compared to the uniform heating
case. At Ra ¼ 106 and Pr ¼ 0:026, the isotherms with
h 6 0:6 are pushed further towards the bottom wall and
consequently the temperature gradients near the bottom
wall are significant. This is due to the fact that the strong
primary circulations occur near the bottom wall (Fig. 10).
In addition, the secondary circulations also occur near
the center of the bottom wall. This further pushes the tem-
perature contours near the center of the bottom wall. As Pr

increases further to Pr ¼ 1000 for Ra ¼ 106, it is observed
that the greater circulations pushes the isotherms towards
the side walls and bottom wall as seen in Fig. 11. In addi-
tion, the greater circulations near the top corner pushes the
isotherms within a very narrow region at the vertex and
that results in large thermal gradient at the top corner
point. In contrast, the intensity of circulations near the bot-
tom corner point is large for uniform heating and large
thermal gradient occurs near the bottom wall. Due to
non-uniform heating of inclined walls, the heating rate near
the bottom corners of the inclined walls is generally lower.
Results indicate that the strength of the circulations is more
for non-uniform heating case than uniform heating.
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4.4. Heat transfer rates: local Nusselt numbers

Fig. 12a and b display the effects of Ra and Pr on the
local Nusselt number at the cold bottom wall and hot
inclined walls. In case of uniform heating of the bottom
wall (see Fig. 12a), due to presence of discontinuity in the
temperature boundary condition at the edges of bottom
wall, the heat transfer rate is very high at these corners
and it reduces towards the middle of the bottom wall as
the compression of thermal contours is minimum at the
middle for Ra = 103. The central regime of the bottom wall
(X ¼ 1) corresponds to large Nu as the compression of the
isotherms occurs due to the presence of secondary circula-
tions near the central regime of the bottom wall. At the
inclined wall (see Fig. 12b), heat transfer rate is maximum
at the bottom edge and minimum at the top edge for all
Rayleigh numbers. As Ra increases from 103 to 105, iso-
therm lines are pushed towards the bottom wall from the
inclined walls due to the presence of secondary circulations.
Therefore, at the junction of bottom wall, the thermal gra-
dients are relatively more and therefore the heat transfer
rate is maximum at the bottom edge of the inclined wall.
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Fig. 12. Variation of local Nusselt number with distance for Pr ¼ 0:026
and 1000 at (a) bottom wall (b) inclined wall for uniformly (—) and non-
uniformly (- - -) heated inclined walls and cold isothermal bottom wall.
It is seen that the spatial distribution of local Nusselt num-
ber for the inclined wall at higher Rayleigh numbers is
wavy in nature.

In the case of non-uniform heating (see Fig. 12a), the
local Nusselt number is almost constant for Ra ¼ 103

throughout the bottom wall due to conduction dominant
mode of heat transfer. As Ra increases from 103 to 105,
there is a maximum value of thermal gradient at X ¼ 1
due to the presence of secondary circulations and that
results in maximum local heat transfer rate ðNuÞ at about
X ¼ 1. Thus, the non-uniform heating strategy produces
a sinusoidal type of local heat transfer rate with its maxi-
mum value at the center and edges of bottom wall. At
the inclined wall (see Fig. 12b), the local Nusselt number
curve for Ra ¼ 103 shows monotonic decrease from bottom
edge to a certain region near to top edge of the inclined
wall and local Nu has a maximum value at the top edge
of the inclined wall due to the compression of isotherms.
Note that, the local Nusselt number have more wavy distri-
butions for smaller Prandtl number (Pr ¼ 0:026) as seen in
Fig. 12b due to stronger primary and secondary circula-
tions. At Pr ¼ 1000, there are two local maxima of local
Nusselt number for the inclined wall as the isotherms are
compressed near the top corner and the bottom portion
of inclined wall.

4.5. Overall heat transfer and average Nusselt numbers

Fig. 13 illustrate the average Nusselt number variations
along the bottom and inclined walls for various Rayleigh
and Prandtl numbers. As a verification of the thermal equi-
librium of the present steady state system, numerical values
of the average Nusselt numbers on bottom and inclined
walls are compared and it is found that the average Nu

of bottom wall is nearly
ffiffiffi
2
p

times of average Nu (within
1% error) of inclined wall as the length of the inclined wall
is

ffiffiffi
2
p

. The current finite element method based analysis is
quite robust to establish the thermal equilibrium and the
investigations on thermal equilibrium were not reported
by earlier works which are based on finite volume or finite
difference methods. The critical Rayleigh number is
obtained from the semi-log plot of average Nusselt number
versus Rayleigh number and at the critical Rayleigh num-
ber the transition from conduction dominant mode into
convection dominant mode takes place. It is seen that the
average Nusselt number increases significantly with Prandtl
number in the case of uniform heating. It may be remarked
that the overall heat transfer rate (average Nusselt number)
is less in non-uniform heating as compared to uniform
heating due to less heat input to the system for all Prandtl
number regimes. For non-uniform heating case, the
increase in average Nusselt number with Rayleigh number
is monotonic for small Pr (see Fig. 13). It is also observed
that the correlations of average Nusselt numbers and Ray-
leigh numbers could not be established for Pr ¼ 1000, since
the variation of average Nusselt number with Rayleigh
number is not monotonic.
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Fig. 13. Variation of average Nusselt number with Rayleigh number for uniformly heated [(a) and (b)] and non-uniformly heated inclined walls [(c) and
(d)] with Pr ¼ 0:026; (—) and Pr ¼ 0:7 (- - -). The insets show the log–log plot of average Nusselt number vs. Rayleigh number for convection dominant
regimes.
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The insets show the log–log plot for average Nusselt
number vs Rayleigh number for convection dominant
regimes. The log–log linear plot is obtained with more than
20 data sets. A least square curve is fitted and the overall
error is limited within 1%. The following correlations with
Prandtl numbers (Pr ¼ 0:026 and 0.7) are obtained for case
I (uniform heating) and case II (non-uniform heating) as
follows:

Case I: Uniform heating of inclined walls

Nub ¼
ffiffiffi
2
p

Nus

¼ 5:0464Ra0:0101; Ra P 2:0� 104; Pr ¼ 0:026

¼ 4:6013Ra0:0190; Ra P 4:0� 104; Pr ¼ 0:7 ð16Þ

Case II: Non-uniform heating of inclined walls

Nub ¼
ffiffiffi
2
p

Nus

¼ 1:6130Ra0:0330; Ra P 2:0� 104; Pr ¼ 0:026

¼ 1:7249Ra0:0260; Ra P 2:0� 104; Pr ¼ 0:7 ð17Þ
5. Conclusions

The prime objective of the current investigation is to
analyze the temperature and flow field with detailed analy-
sis on heat transfer evaluation for natural convection in tri-
angular enclosure. The penalty finite element method helps
to obtain smooth solutions in terms of stream function and
isotherm contours for wide ranges of RaðRa ¼ 103 � 106Þ
and PrðPr ¼ 0:026� 1000Þ with uniform and non-uniform
heating of the side walls. Results indicate that at low Ray-
leigh number (Ra ¼ 103), the isotherm lines are smooth and
monotonic and heat transfer is primarily due to conduc-
tion. It was observed that the conduction heat transfer
mode was dominant upto Ra 6 2� 104 during uniform
and non-uniform heating of the side walls with
Pr ¼ 0:026. At the onset of convection dominant mode,
the temperature contour lines get compressed towards cen-
tral regime of the bottom wall. As Ra increases further for
Pr ¼ 0:026, the isotherm contours are pushed more
towards the bottom wall and the secondary circulations
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develop near the intersection of the inclined walls. It has
been observed that at lower Prandtl number, the compres-
sion of temperature contours is more and secondary circu-
lations are observed. Further results show that, as Pr

increases from 0.026 to 1000, the values of stream function
and isotherms in the core cavity increase. It is also found
that at small Prandtl numbers geometry does not have
much influence on flow structure. At high Prandtl numbers
geometry has considerable effect, stream function contours
are nearly triangular in shape. It is observed that the local
Nusselt numbers are maximum at the bottom corner points
and due to secondary circulations, the local Nusselt num-
ber distribution show wavy nature for high Ra with
Pr ¼ 0:026 for both uniform and non-uniform heating
cases. For non-uniform heating case, the sinusoidal distri-
bution of local Nusselt number at the inclined wall is
observed for all Prandtl number regimes. In addition, the
lower Prandtl number corresponds to more secondary cir-
culations and flow separations. The average Nusselt num-
ber illustrates overall lower heat transfer rates for
sinusoidal heating cases. The average Nusselt number is
found to follow power law variation with Rayleigh number
for convection dominant regimes for Pr (Pr ¼ 0:026� 0:7).
Appendix A

The name iso-parametric derives from the fact that the
same parametric function describing the geometry may be
used for interpolating spatial variable within an element.
Fig. 2 shows a triangular domain with trapezoidal elements
with the mapping to a square domain. The transformation
between ðx; yÞ and ðn; gÞ coordinates can be defined by

X ¼
X9

k¼1

Ukðn; gÞxk

and

Y ¼
X9

k¼1

Ukðn; gÞyk:

Here ðxk; ykÞ are the X, Y coordinates of the k nodal points
as seen in Fig. 2a and b and Ukðn; gÞ is the basis function.
The nine basis functions are:

U1 ¼ ð1� 3nþ 2n2Þð1� 3gþ 2g2Þ
U2 ¼ ð1� 3nþ 2n2Þð4g� 4g2Þ
U3 ¼ ð1� 3nþ 2n2Þð�gþ 2g2Þ
U4 ¼ ð�nþ 2n2Þð1� 3gþ 2g2Þ
U5 ¼ ð�nþ 2n2Þð4g� 4g2Þ
U6 ¼ ð�nþ 2n2Þð�gþ 2g2Þ
U7 ¼ ð4n� 4n2Þð1� 3gþ 2g2Þ
U8 ¼ ð4n� 4n2Þð4g� 4g2Þ
U9 ¼ ð4n� 4n2Þð�gþ 2g2Þ

The above basis functions are used for mapping the tri-
angular domain or elements within the triangle into square
domain and the evaluation of integrals of residuals.
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